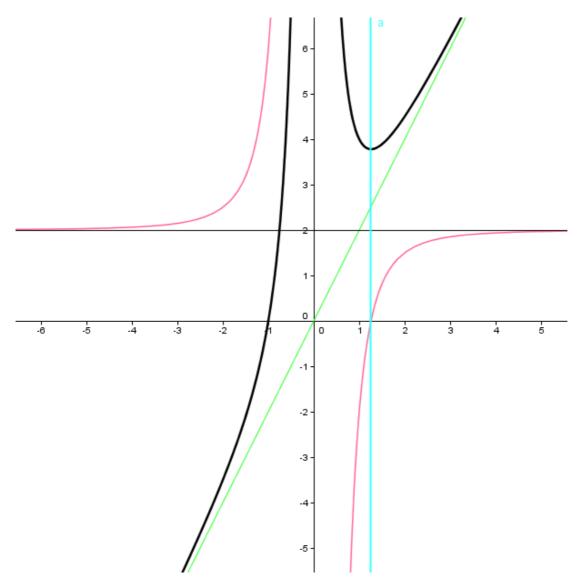
Buch S. 70/3e



Grundsätzliche Eigenschaften dieser Funktion:

- Schiefe Asymptote y = 2x: Zählergrad = Nennergrad +1 und Polynomdivision oder algebraisch umformen $f(x) = 2x + 2/x^2$ mit linearem Anteil: y = 2x
- Polstelle bei x = 0, doppelt oVZW
- Nullstelle bei $x = -1 = (-1)^{1/3}$
- Grenzwerte im Unendlichen: $\lim_{x\to\infty} f(x) = +\infty$ und $\lim_{x\to-\infty} f(x) = -\infty$

An der Stelle x = $\sqrt[3]{2}$ liegen keine dieser obigen Besonderheiten vor – also weitere Untersuchung mit Hilfe der Ableitungsfunktion f'(x)

Mit Zerlegung:
$$f'(x) = 2 + 2*(-2)\frac{1}{x^3} = 2\frac{x^3-2}{x^3}$$

Oder mit Quotientenregel:
$$f'(x) = \frac{6x^2 * x^2 - (2x^3 + 2) * 2x}{x^4} = \frac{2x^4 - 4x}{x^4} = 2\frac{x*(x^3 - 2)}{x^4} = 2\frac{x^3 - 2}{x^3}$$

$$x = \sqrt[3]{2}$$
 einsetzen: $f'(\sqrt[3]{2}) = 2\frac{2-2}{2} = 2 * \frac{0}{2} = 0$

Vorzeichenuntersuchung von f'(x) in der Umgebung von x = $\sqrt[3]{2}$

- 2 und x³ ändern in einer Umgebung ihrer Vorzeichen nicht beide Faktoren sind positiv
- x^3-2 besitzt die Nullstelle $2^{\frac{1}{3}}$ und wechselt dort das VZ von nach plus Begründung: streng monoton steigend, da $(x^3-2)'=3x^2>0$ in einer Umgebung

Folgerung: bei $x=\sqrt[3]{2}$ liegt ein lokales Minimum (Tiefpunkt) vor.

Alternativ mit f''(x) = -4 * (-3) *
$$\frac{1}{x^4}$$
 = 12 * $\frac{1}{x^4}$ > 0 \forall x \in R